Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice.
نویسندگان
چکیده
Parkinson's disease (PD) is characterized by a loss of ventral midbrain dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Inflammatory oxidants have emerged as key contributors to PD- and MPTP-related neurodegeneration. Here, we show that myeloperoxidase (MPO), a key oxidant-producing enzyme during inflammation, is upregulated in the ventral midbrain of human PD and MPTP mice. We also show that ventral midbrain dopaminergic neurons of mutant mice deficient in MPO are more resistant to MPTP-induced cytotoxicity than their wild-type littermates. Supporting the oxidative damaging role of MPO in this PD model are the demonstrations that MPO-specific biomarkers 3-chlorotyrosine and hypochlorous acid-modified proteins increase in the brains of MPTP-injected mice. This study demonstrates that MPO participates in the MPTP neurotoxic process and suggests that inhibitors of MPO may provide a protective benefit in PD.
منابع مشابه
Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملEvaluation of neuroprotective effects of cobalamin (vitamin B12) in Parkinson's disease - Investigation of molecular mechanisms
Background & objectives: Parkinson's disease is one of the most common neurodegenerative diseases that its prevalence has increased in recent years. Although many efforts have been made to treat this disease, so far, no therapeutic approach has been found that can stop the destruction of dopaminergic cells in the substantia nigra. The aim of the present study was to investigate the effect of v...
متن کاملKinetic Investigation of Myeloperoxidase upon Interaction with Copper, Cadmium, and Lead Ions
Background: Myeloperoxidase (MPO), which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is...
متن کاملPhytic Acid Mitigates Motor Asymmetry in Male Rat with Unilateral 6-Hydroxydopamine Striatal Lesion
Background and Objective: Parkinson's disease (PD) is a movement disorder with debilitating symptoms. Available treatments for PD mainly include its symptomatic relief with no prevention of its progression. Due to the iron-chelating and antioxidant effect of phytic acid (PA), this study was conducted to assess its protective effect in 6-hydroxydopamine-induced model of PD in rat. Materials and ...
متن کاملThe effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 28 شماره
صفحات -
تاریخ انتشار 2005